Solutions of biharmonic equations with steep potential wells

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign-changing Multi-bump Solutions for Nonlinear Schrödinger Equations with Steep Potential Wells

We study the nonlinear Schrödinger equations: (Pλ) −∆u+(λa(x)+1)u = |u|p−1u, u ∈ H(R ), where p > 1 is a subcritical exponent, a(x) is a continuous function satisfying a(x) ≥ 0, 0 < lim inf |x|→∞ a(x) ≤ lim sup|x|→∞ a(x) < ∞ and a−1(0) consists of 2 connected bounded smooth components Ω1 and Ω2. We study the existence of solutions (uλ) of (Pλ) which converge to 0 in RN \ (Ω1 ∪Ω2) and to a presc...

متن کامل

The existence of nontrivial solution for a class of sublinear biharmonic equations with steep potential well

where 2u = ( u), N > 4, λ > 0, 1 < q < 2 and μ ∈ [0,μ0], 0 < μ0 <∞. The continuous function f verifies the assumptions: (f1) f (s) = o(|s|) as s→ 0; (f2) f (s) = o(|s|) as |s| →∞; (f3) F(u0) > 0 for some u0 > 0, where F(u) = ∫ u 0 f (t) dt. According to hypotheses (f1)–(f3), the number cf = max s =0 | f (s) s | > 0 is well defined (see [1]). The continuous functions α and K verify the assumptio...

متن کامل

Radial entire solutions for supercritical biharmonic equations ∗

We prove existence and uniqueness (up to rescaling) of positive radial entire solutions of supercritical semilinear biharmonic equations. The proof is performed with a shooting method which uses the value of the second derivative at the origin as a parameter. This method also enables us to find finite time blow up solutions. Finally, we study the convergence at infinity of regular solutions tow...

متن کامل

Multiple Solutions for Biharmonic Equations with Asymptotically Linear Nonlinearities

Ruichang Pei1, 2 1 Center for Nonlinear Studies, Northwest University, Xi’an 710069, China 2 Department of Mathematics, Tianshui Normal University, Tianshui 741001, China Correspondence should be addressed to Ruichang Pei, [email protected] Received 26 February 2010; Revised 2 April 2010; Accepted 22 April 2010 Academic Editor: Kanishka Perera Copyright q 2010 Ruichang Pei. This is an open access ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SCIENTIA SINICA Mathematica

سال: 2018

ISSN: 1674-7216

DOI: 10.1360/scm-2017-0736